Error Estimates for the Finite Element Approximation of Problems in Unbounded Domains
نویسندگان
چکیده
In this paper we present error estimates for the finite element approximation of linear elliptic problems in unbounded domains that are outside an obstacle and a semi-infinite strip in the plane. The finite element approximation is formulated on a bounded domain using a nonlocal approximate artificial boundary condition. In fact there is a family of approximate boundary conditions with increasing accuracy (and computational cost) for a given artificial boundary. Our error estimates are based on the mesh size, the terms used in the approximate artificial boundary condition, and the location of the artificial boundary. Numerical examples for Poisson’s problem outside a circle and in a semi-infinite strip are presented. Numerical results demonstrate the performance of our error estimates.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA Finite Element Method for Solving Heimholt/ Type Equations in Waveguides and Other Unbounded Domains*
A finite element method is described for solving Helmholtz type boundary value problems in unbounded regions, including those with infinite boundaries. Typical examples include the propagation of acoustic or electromagnetic waves in waveguides. The radiation condition at infinity is based on separation of variables and differs from the classical Sommerfeld radiation condition. It is shown that ...
متن کاملOn the Simplified Hybrid - Combined Method *
In order to solve the boundary value problems of elliptic equations, especially with singularities and unbounded domains, the simplified hybrid-combined method, which is equivalent to the coupling method of Zienkiewicz et al. [15], is presented. This is a combination of the Ritz-Galerkin and the finite element methods. Its optimal error estimates are proved in this paper, and the solution strat...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2000